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The finitedifference Newton-Raphson algorithm coupled with a self-consistent field 
iteration, which recently has proved to be very successful in solving the atomic Hartree- 
Fock equations for a single configuration, has been extended to treat the multicon- 
figuration case. The problem is algebraic&d through the introduction of finite-difference 
variables, treating the multipliers on normalization and orthogonality on an equal footing 
with the other variables, and the resulting large system of nonlinear algebraic equations 
is solved by means of a generalized Newton-Raphson iteration. Because of the particular 
ordering of the variables and equations and the coupled SCF iteration employed, the 
unit operation of the method involves the inversion of a partly block tridiagonal 
Jacobian matrix and can be solved rapidly by means of a partitioning. A solution of the 
ls2s1S excited state of helium is presented as an example. 

1. 1NTRoDucT10~ 

Recently a finite-difference Newtons,Raphson algorithm (FDNRA), originally 
developed by Van Dine [I], has been successfully applied to the solution of the 
atomic Hartree-Fock (HF) problem [2]. The algorithm has also been used to 
solve the two-center electronic Schrodinger equation [3] and the factored HF 
equations for diatomic molecules [4]. 

In the present work the algorithm has been further extended to solve the atomic 
multiconfiguration Hat-tree-Fock (MCHF) equations. The pioneering computa- 
tional work in this field has been done by Froese-Fischer [5, 61 using numerical 
integration techniques [7]. She reports convergence difficulties for configurations 
such as 1~29~ [6] and considers this case to be a critical test of any MCHF 
algorithm [8]. The difficulty is apparently associated with a strong orthogonality 
condition between two orbitals involving the same angular quantum numbers, 
both of which are in incomplete groups. This situation leads to significantly large 
values of off-diagonal multipliers. 

Since one of the advantages of the FDNRA is the treatment of all multipliers 
on equal footing with the other variables, rather than as adjuncts to the problem, 
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it was thought that the finite-difference approach might be successful in solving 
the MCHF equations for the 1~2~~5’ configuration of helium. Therefore, after 
first presenting the algorithm in general for atomic MCHF calculations, we apply 
it to this specific case as a first test for convergence. 

In the following section the MCHF problem is outlined, and in Section 3 the 
system of equations is converted to finite-difference form. The method of solution, 
which is a generalization of that given in [2], is presented in Section 4 with further 
details in an Appendix, and the results of the ls2s1S test case are given in Section 5. 

2. THE MCHF PROBLEM 

Let the total wavefunction of an N-electron atom be approximated by 

!P = i aId+, 
I=1 

(1) 

where the 

@I = -Ql(hYl) *-* 4N’(W), I = l,..., L, (2) 

are determinantal functions of N spin-orbitals $,I, 01 = l,..., N, and the aI are 
constant mixing coefficients. The mixing coefficients a, and the spin-orbitals &I 
are determined variationally. The a, are generally not all independent. The ratios 
of certain ones of them must be held fixed in order to make (1) an eigenfunction 
of total angular momentum, depending upon the coupling scheme. 

Following [2] we factorize the spin-orbitals into the form, 

%I I 
+,’ = P,‘(p) Y&I (w) xl;& a = l,..., N; I = l,..., L, 

where 

~a%4 = P&Wf))~ (4) 

with R the usual radial function, Y a spherical harmonic, and x a spinor; and the 
radial variable p is given in terms of the ordinary radius by the transformation 

p = r/(1 + ar) (a > 0). (5) 

As explained in [2] these variables are well suited to finite differences. In particular 
the transformation (5) maps the infinite range of r into the finite region 0 < p < l/a. 
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In terms of the variables and orbitals defined by Eqs. (1) through (5) the MCHF 
equations are a set of coupled integrodifferential equations of the following form. 

[( 1 d2 
aJCaJ ---- 

z 

J 2 dp2 ~(1 - ap)” 

YXP) MP> 1 c h IJ 
+ (1 -(+))4 P,"(P) - (1 _ ap)4 - J,B (1 -aQap)4 4% I; b9 4 PB”(P> = 09 

a = l,..., N; I = I,..., L, (6a) 

*I 
1/a 

PsYP’) f’,J(~‘) dp, P’) dp’, 

and 
0 

Xi’“cp> = c W&I&) +&n&J c (4n/(2A + 1)) B:,$3:&J@) 
8 l+,u 

*s 
1/a 

~‘B’(P’> pa”(p’> gdp, P’) dp’, 

where 
0 

and 
&; E i4* Y;;(w)* YA“(w)* Y;;(w) dw, 

gdp, P’> = (pcAIO - ap<)“)W - ap,Y+11p3U - ap’)Y4, 
and 

P< = m&i3 P’) and P> = mWp, P’>. 

For given values of the coefficients al, Eqs. (6a) are to be solved subject to the 
following conditions. 

Boundary conditions: 

P,‘(O) = P,‘(l/a) = 0, a = l,..., N, I = I,..., L, W 

normalization conditions: 

I 
1/a 

Pm’(p) PolJ(p)(l - ap)-” dp - 1 = 0, 
0 

a = l,..., N, I = l,..., L, .I = l,..., L; 

orthogonality conditions: 

(6~) 

s 
1/a 

Pm’(p) J’BJ(~)(l - apF4 dp = 0 for all values of 01, Z, p, W 
0 

and J such that /3 < LY and d(cu, I; /3, J) = 1. 
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The variational equations for the mixing coefficients can be put in the form 
of a matrix eigenvalue equation. Since the aI’s generally are not all independent 
it is convenient to define a new set of independent coefficients. We reexpand the 
total wavefunction (1) in an equivalent set of vector coupled linear combinations 
of determinants 

L’ 

Y = 1 aK’QK’ 
K-1 

CL’ < 0, 

where di,’ = CJ CJK@, . The CJK are vector coupling coefficients and the sum 
on J is over a particular subset of the L determinants, depending upon the specific 
case. The coefficients a, are obtained from the independent coefficients aK’ by 
simply multiplying by the appropriate vector coupling coefficient. 

The variational equations for the UK’s are 

c (HJK - (lGJK) UK’ = 0, J = I,..., hi’, (84 

where 
K 

and A is the total energy and the Lagrange multiplier associated with the normal- 
ization constraint 

,c, U;G&K’ - 1 = 0. (W 

The orbitals, determined by solving (6), depend upon the values of the expansion 
coefficients, while the latter, determined by a solution of (8), depend upon the 
orbitals through the matrix elements HJK and GJK . These two sets of equations 
must be solved in a self-consistent manner. 

3. FINITE DIFFERENCE FORM 

We now algebraicize the system of equations (6) by introducing a finite-difference 
approximation. The p axis between p = 0 and p = l/a is divided by a mesh of 
M - 1 evenly spaced internal points, so that the interval between points is 
h = l/Mu. We adopt the notation 

pk = kh, k = O,..., M, (9) 

Pi” = P,‘(p,), a = I,..., N; I = l,..., L; k = 0 ,..., M. (10) 



FINITE-DIFFERENCE MULTICONFIGURATION HARTREE-FOCK 439 

As in [2], a fkst-order approximation for the second derivative (central difference 
quotient) is used. Explicitly at mesh point k, 

(d2P,‘/dp2) I px w (I/hyP,“k-l’ - 2P,“” + P;(k+l)). (11) 

The trapezoidal rule is used to approximate the integrals, which is entirely con- 
sistent with the frrst-order approximation of the second derivative. 

With these approximations the finite-difference MCHF equations are 

aI c a,[(@ + Y,‘““(l - akh)-4) P,“” - (1/2/~“>(P~‘~-” + Pitk+l)) 
J 

where 

- XiJk(l - akh)-4] - c A$ d(ol, I; fl, J)(l - akh)-4 PBJk = 0, 
J.6 

a = I,..., N; I = I,..., L; k = I,..., M - 1, (12a) 

DJk z L - 
Z LJ(LJ + 1) 

a h2 ,Z&(l - a/&)3 ’ 2&Z/$(1 - a/&)2 I ‘(Or’ I’ 01’ J)y 
L-l 

YiJk = s(m&m;J c S( m&m&) C (4~/(2X + 1)) BiiBi, c PFPi*gik, 
6 1.u j=l 

and 
L-l 

XiJk = c 8(m&m&) s(m&m&) c (4?r/(2X + 1)) B$BgPp c Pi5Pzgik, 
6 A,u j=l 

where 

gp = (pA/(l - aph)A)((l - aqh)A”/q”‘l)(l - ajh)-4, 

and p = min(j, k), q = max(j, k). In terms of finite-difference variables, condi- 
tions (6b)-(d) become 

boundary conditions: 

p;” = p,‘” = 0, a = I,..., N; I = l,..., L; 

normalization conditions: 

M-l 

h c PL5Pf(l - ajh)-4 - 1 = 0, 
j=l 

01 = l,..., N; I = l,..., L; J = 

orthogonality conditions: 

M-l 

h c PzP:(l - ajh)-4 = 0 
j=l 

for all values of 01, I, t5I, 

and J such that /3 < cy and d(ol, I; /3, J) = 1. 

WV 

1 L; ,**., 

uw 

WV 
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For given values of the coefficients a,, Eqs. (12) are a set of nonlinear algebraic 
equations in the unknowns PL” and A$, one equation corresponding to each 
unknown. In the next section we give a practical method for solving this system 
of algebraic equations. 

4. METHOD OF SOLUTION 

The sets of Eqs. (8) and (12) are solved alternately in a self-consistent manner. 
We first consider the solution of the SnitedifTerence MCHF equations (Eqs. (12)) 
for given values of the coefficients a, . The unknowns of (12) are the NL(M + 1) 
values Pi” and the Lagrange multipliers X$ for d(ol, I; fl, .7) = 1. As a trivial first 
step one can substitute the boundary conditions (12b) into (12a) for 01 = l,..., N; 
I = I,..., L, and k = 0 and k = M - 1. In so doing we have reduced the order 
of our system of equations and unknowns by 2LN, and the boundary conditions 
(12b) will be automatically satisfied. 

As emphasized in [2] it is important to treat all of the unknowns, the multipliers 
included, on an equal footing. With this point in mind, and also, as we shall see, 
in order to make the calculation tractable, we define a vector U, for each value of 01 
with components, 

lJmK = Pik, a = I,..., N; I = l,..., L; k = l,..., M - 1, (134 
where 

K E (k - l)L + I, 
(13’4 

uK+(L--I)M = AIJ 
L1 (10 9 cy = I,..., N; I,J= l,..., L, 

where 
K = (J - l)L + 1, 

(13c) 
UK&-I) hf+M’ = A” (I ua 9 a, /I = l,..., N,@(a); I,J= l,..., L, 

where K is simply increased by one for each required Lagrange multiplier X$ 
corresponding to an orthogonality condition (12d) for which d(ol, I; p, J) = 1, 
the order being unimportant. It is important to note that the vector U, contains 
consecutively Pi’, P,“‘,..., Pf’; Ptz, P,“” ,..., P,““;... ; PttMel), Pz@+” ,..., PtcMel), i.e., 
the P, from each determinant at the tirst mesh point, followed by the same quanti- 
ties at the second mesh point, etc. These are followed in the vector by the multipliers 
which are treated the same as the other variables with no special considerations. 

We similarly define a function vector F,cLT, ,.,., UN) with components 
f,“Wl ,-*-, UN). In terms of these definitions the finite-difference MCHF Eqs. (12) 
can be written as 

.LK(Ul ,a.*, U,) = 0, 01 = l,..., N; K = l,..., L(L + A4 - I),..., (14) 
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where the limit on Kdepends upon the number of orthogonality conditions in (12d). 
For a given (Y, (14) corresponds to (12a) with K = (k - 1)L + 1, to (12~) with 
K = (J + M - 2)L + I, and finally to (12d) for K > (M + L - l)L. 

We now wish to determine values for all the components of the U vectors such 
that the set of nonlinear algebraic equations (14) are satisfied within a given 
tolerance. As in [2] we introduce two complementary iterative procedures: (1) the 
well-known SCF procedure and (2) a generalized Newton-Raphson iteration 
(GNRI). 

Within an SCF iteration we solve in sequence the subsets of Eqs. (14) for 
01 = I,..., N, by means of the GNRI to be described. In the usual SCF manner 
for a given value of 01 in the sequence, the unknowns U&3 # a) in the functions 
faK are treated as constants and are fixed at their respective values as determined 
in the preceding SCF iteration or in the solution of the subset /3 in the present SCF 
iteration, whichever has occurred later. The unknowns Pi” occurring in the 
exchange integrals are given similar treatment. 

Within an SCF iteration the GNRI is used to obtain a solution of the subsets 
of Eqs. (14) corresponding to each value of oi. If we denote the solution and function 
vectors evaluated at the nth GNRI by Ur) and FYI, respectively, then at the 
(n + I)th iteration the solution vector is given by 

@+1) = U'"' 
a a 

- (Jcn))-l F>), 

where the matrix elements of the Jacobian matrix P) are given by 

(1% 

The iteration (12) is repeated until 

max( I faK(Up’)l) < tolerance, 

since when F(“) = 0 the problem is solved exactly for the given subset 01. 
The particilar ordering of the elements in the U, vector given by (13) and the 

elements in the function vector F, given by (14) lead to Jacobian matrices (16) 
which are in a special nearly block tridiagonal form. Consequently Eq. (15) 
may be rapidly solved by means of a partitioning (see Appendix). 

Within a general SCF iteration the starting vectors UL”’ contain the respective 
values of the variables UaK as determined in the previous SCF iteration. On the 
first SCF iteration after obtaining new expansion coefficients from a solution of (8), 
the starting vectors U, (O) should be set respectively equal to final U, vectors corre- 
sponding to the old expansion coefficients. 

Turning our attention briefly to the solution of (8) for new values of the expansion 
coefficients corresponding to a given set of determinantal functions @, , the first 



442 FIMPLE, MCKENZIE AND WHITE 

step is the evaluation of the matrix elements HJK and GJK in (8) by means of 
numerical quadrature. In accordance with our evaluation of Coulomb and exchange 
integrals, we also use trapezoidal rule here. Having evaluated the matrix elements, 
the solution of (8) is simply a symmetric matrix eigenvalue problem for which 
standard algorithms are available. 

5. THE Is2sfS STATE OF HELIUM 

As mentioned previously we have chosen the ls2s?S state of helium as a test 
case because the strong orthogonality condition between the Is and 2s orbitals is 
reported to cause convergence difficulties. Also it is the most simple case for 
which more than one derivative term appears in (6a). 

We consider the mixing of the three configurations ls2s, 1s2, and 2s2 to compose 
the ls2slS state. We have restricted the number of configurations to these three 
in the interest of simplicity, since we are only testing the finite-difference algorithm 
and not doing a definitive calculation. Furthermore, we restrict the 1s functions 
in ls2 to be the same as in 1~2s and similarly for the 2s functions in 29. Therefore 
we only have two radial functions instead of N x L = 2 x 3 = 6 which we 
would have without these restrictions. 

Let the coefficients corresponding to the configurations ls2s, 1s2, and 2s2 be 
denoted by a, , a2 , and a,, respectively. We write the finite-difference equations 
in terms of the components of a U vector defined as follows. Denoting the 1s and 
2s functions by subscripts 1 and 2, 

U2k-1 E J’l(pk) E Pl”, 
u2'i = p lc 

- 22 k = I,..., M - 1, 
U2M-1 E X 

11 7 

U2M 3 A,, ) 
U2M+4 EG A,, . 

(17) 

In terms of these variables the system of finite-difference equations may be written 
as 

f”“-’ = [(at + 2a;)((l/@) - (2/kh(l - akh)3)) + 2az2Y,k, 

f a12Yt2 -I- 23’2a1a2YF2 - (U2M-1/(l - akh)*)] U2”-l 

- ( 1/2h2)(a12 + 2a22)( U2k-3 + U2”f1) 

+ [21’2a,(a2 + a,)(( l/h2) - (2/kh(l - akh)3)) + 21’2a,a3Yt2 

-t 21’2a,a2Ytl + (al2 + 2a2a3) Y,“, - (U”“‘“‘/(l - akh)4)] U2k 

- 2-1/2(a,/h2)(a2 + a3)(U2k-2 + U2k+2) = 0, k = l,..., M - 1; (18a) 
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f ak = [(al” + 2a,a)(( l/P) - (2/kh(l - ukh)3)) + 2a,2ytz 

+ u12Yfl + 23’2u,a3Y~~ - (U”“/(l - a/%)“)] Uak 
- (1/2IP)(u,2 + 2u33( P-2 + P+2) 

+ [2%,(u, + u3)((l/h2) - (2/kh(l - ukh)3)) + 2%,u,Y,kl 

+ 21’%,u3Y& + (al” + 2u,u3) Yt2 - (@“‘l/(1 - ukh)4)] u2”-l 
- 2-‘&&“)(u~ + u,)(P-3 + u2”+1) = 0, k=l ,..., A4 - 1; (18b) 

M-l 
fzM-l = h C (1 _ a#)-4 UZj-luzj-1 _ 1 = 0; 

i=l 

M-1 

f2M = h c (1 - ujh)-” UZi@j - 1 = 0; 
j=l 

M-l 
f"M+' = j c (1 - uj/g-4 u2i-qJ2j = 0; 

j=l 

where 
M-l 

Y$ = (1 - ukh)-’ C (1 - a$~)-~ (( 1 - uqh)/q) U2i+a--2U2*+B-2 
j=l 

and q = max(j, k). 
Since we only have two orbitals we use the GNRI to determine them simul- 

taneously which gives us a Jacobian matrix containing 2 x 2 subblocks (see 
Appendix). We commence the calculation with only the principal 1x2s configura- 
tion included (i.e., a, = 1, u2 = u3 = 0). As in [2] we start with hydrogenic 
(Z = 2) 1s and 2s functions in finite-difference form which approximately satisfy 
(18) with all interactions set to zero. A tracking procedure is employed where the 
interaction terms in (18) are multiplied by a parameter E, and E is varied from 0 
to 1 in steps of 0.1, the converged U vector for one step serving as a starting 
approximation for the next. 

The calculation was carried out with 100 mesh points. Weak Newton-Raphson 
and SCF tolerances of 1O-4 and 1O-2 respectively were set during tracking. The 
final single configuration 1~2s solution at E = 1.0 was obtained with tolerances 
of IO-’ and 10-5. The total energy of -2.170141 a.u., the values of the multipliers 
(AI1 = -1.71655, X2, = -0.186837, and h,, = 0.150860), and the 1s and 2s 
functions themselves all agree to four figures with the previously published results 
of Cohen and Kelly [9] for the 1~2s single-con6guration. Complete agreement is 
not expected since the finite-difference results have not been extrapolated to the 
h -+ 0 limit [2]. These authors used the computer program of Froese-Fischer. 
The calculated energy is actually below the experimental energy for the ISIS?!? 
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state of helium (-2.146915 a.u., [lo]). This result does not violate the variational 
principle because we are dealing with an excited state. 

We next consider the addition of the ls2 and 2s2 cotigurations. After calculating 
the six independent matrix elements of the Hamiltonian using the 1s and 2s 
functions just obtained, we diagonalize the symmetric matrix, using Jacobi’s 
procedure, and obtain new values of the coefficients (a1 = 0.922940, a, = 0.356911, 
and a, = -0.144211). We also obtain three energy eigenvalues (-2.772667, 
-2.119310, and -0.670193 a.u.) which, by the Hylleraas Undheim theorem, 
are three upper bounds on the energy levels of the three lowest-lying ?S states. 

The next problem is to make the coefficients self-consistent. During this exercise 
we set our tolerances once again to the tracking values. We put the new values of 
the coefficients into the finite-difference equations (Eqs. (18)), with the interactions 
at full strength, and tried to solve the system using the single cotiguration Is 
and 2s functions for the starting U vector. But the GNRI failed to converge 
because the new values of the coefficients are too far removed from the single- 
configuration values of 1, 0, and 0. 

To overcome this problem the great circle on the unit sphere in coefficient space 
between the old and the new coefficient values was divided into N equal segments. 
The values at the end of the first segment were put back into (18) instead of those 
predicted by the diagonalization. Thus the values of the coefficients were changed 
in the proper direction in coefficient space while always maintaining overall 
normalization. After every solution of (18) obtaining new orbitals, the Hamiltonian 
matrix was again diagonalized, providing a new segmented great circle and new 
values of the coefficients. The value of N was initially taken to be 5 and was 
reduced to 2 as the values became more self-consistent. A history of this procedure 
is given in Table I. In retrospect it seems that the convergent process could have 
been accelerated by decreasing N faster and also tightening the tolerances sooner. 

The final 1s and 2s functions and the values of the multipliers are given in 
Table II where every fifth value is tabulated. The small negative tail on the Is 
function is a characteristic of the ls2s?!? state. It also appears in the single con- 
figuration function. It will also be noticed that the off-diagonal Lagrange multiplier 
h,, , which was of comparable magnitude to X,, in the single configuration case, 
has now been considerably reduced, meaning that the orthogonality constraint is 
weaker for the multiconfiguration case. This fact is reflected in an increased rate 
of GNRI convergence. 

Finally one could repeat the calculation with different numbers of mesh points, 
and use Richardson extrapolation [l l] to determine values of energy and coeffi- 
cients corresponding to the differential system. Since we are only testing the method 
we have elected not to do this. 

It has been pointed out that the MCHF equations which we have just solved 
using finite differences do not have a unique solution [12]. One can perform an 
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TABLE II 

Final Converged U Vector’*” 

IS 2s 

K UK K UK 

1 0.5535710 - 01 2 0.2389850 - 03 
11 0.2983100 + 00 12 0.1338670 - 02 

21 0.4853230 + 00 22 0.2413840 -02 
31 0.6176350 + 00 32 0.3624890 - 02 
41 0.6974180 + 00 42 0.5058700 - 02 
51 0.7279780 + 00 52 0.6664190 - 02 
61 0.7139640 + 00 62 0.8179820 - 02 
71 0.6615620 + 00 72 0.9063130 - 02 

81 0.5786340 + 00 82 0.8442620 - 02 
91 0.4747380 + 00 92 0.5127930 - 02 

101 0.3608980 + 00 102 -0.2263480 - 02 
111 0.2489820 + 00 112 -0.1497840 - 01 

121 0.1505000 f 00 122 -0.3349540 - 01 

131 0.7468100 - 01 132 -0.5651050 - 01 

141 0.2605310 - 01 142 -0.7961420 - 01 

151 0.2504500 - 02 152 -0.942121 D - 01 
161 -0.4076370 - 02 162 -0.8848920 - 01 

171 -0.3109220 - 02 172 -0.5509610 - 01 

181 -0.6849000 - 03 182 -0.120368D -01 
191 -0.1157530 - 05 192 -0.2034270 - 04 
197 -0.9311910 - 13 198 -0.1636490 - 11 

199 

201 

-0.1749900 -b 01 200 -0.1443340 + 00 

0.6842570 - 01 

o See Eq. (17). 
) Number of mesh points A4 = 100; a = 1.0 (see Eq. (5)). 

orthogonal transformation mixing the 1s and 2s radial functions (without altering 
the total energy), and obtain a new solution of the equations with different values 
of the coefficients. The same is true for the finite-difference system. In such circum- 
stances one might be concerned about getting an instability in the sequential 
solutions for the radial functions and the coefficients. It is satisfying to note from 
Table I that no such instability occurred, as the convergence is nearly monotonic. 
Nonuniqueness in the form of the solution is not a problem with the FDNRA. 
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6. CONCLUSIONS 

The finite-difference Newton-Raphson algorithm has been extended to treat 
the multiconfiguration atomic Hartree-Fock equations in their full generality. 
Although the test case was a relatively simple one from the point of view of number 
of configurations and orbitals, nevertheless it is a case which has caused difficulties 
in the past. We do not see any fundamental problems which would preclude the 
treatment of more complicated cases with the present algorithm. 

One final note: It might seem to be advantageous to include the expansion 
coefficients in the U vector and use the GNRI to solve for them along with the 
orbitals and multipliers. This procedure has been tried and it ruins the quadratic 
convergence of the GNRI. It still converges, but only at a rate comparable to 
the SCF convergence. The reason is that one cannot construct a Jacobian matrix 
which includes the partial derivatives of the variational equations with respect to 
the coefficients and which is also compatible with the absence of partial derivatives 
with respect to variables in the Coulomb and exchange integrals. One could only 
do this in a consistent manner if one abandoned the SCF iteration completely, 
but then the Jacobian matrix would be completely full and the procedure becomes 
impractical. 

APPENDIX 

Due to the particular ordering of the U, and F, vectors defined in Section 4 
the Jacobian matrices .P) encountered in (15) are all of the partly block tridiagonal 
form shown in Fig. 1. The submatrix A is an L(M - 1) x L(M - 1) block 

LiM-1) v- c-l 
\ -- 

J = 

L(M-1) 

I 
c 
t 

FIGURE 1 
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tridiagonal square matrix with nonzero L x L square subblocks &r-l , Aii , 
and Ai,i+l (i = l,..., L(M - 1)). B is a general L(M - 1) x L’ matrix and C is 
a general L’ x L(M - 1) matrix, where L’ is the total number of normalization 
and orthogonality constraints associated with a given value of 01. It is useful to 
partition the B and C matrices into general L x L’ and L’ x L submatrices, 
respectively, and label them B, and C, (i = l,..., M - 1). 

The following algorithm for the solution of (12) is a generalization of the one 
given in 121 for the special case L = 1. First, let us rewrite (12) as 

where 

#“‘A OL = F’“’ a 2 (Al) 

Aa 3 uy - ++I)* W) 

Once (Al) is solved for A,, the vector Ur+l) is directly obtained since Ur) is 
already known. Furthermore, we define 

and 

A, = Al 
( 1 A (A3) 20 

F(n) = F, n ( 1 F ’ (A4) 
2a 

where A, and F1 are vectors of length L(M - 1) and A, and Fz are vectors of 
length L’. Equation (Al) can be written as 

or equivalently it can be expressed as two matrix equations 

and 
AA, + BA, = F, 646) 

CA, = Fz . (A7) 

From (A6) and (A7) we obtain directly that 

CA-lBA2 = CA-lF1 - F2 W) 
and 

AA, = F1 - BAA,. (A9) 

Equations (A8) and (A9) are solved for A, and A2 in the following way. First, 
we define Bi3 (j = l,..., L’) to be the column vectors of the submatrix Bi 
(i = l,..., M - 1). Similarly, let Cii (j = I,..., L’) denote the row vectors of the 
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submatrix Ci (i = l,..., M - 1). We obtain the L(M - 1) x L’ matrix A-lB by 
defining the L x L matrices [ll] 

WI = AG1A12 ; Wi = (Ati - Aiiel W,&-’ Aii+l , i = 2,..., M- 2, (AlO) 

and length L column vectors 

Glj s AG’Blj ; Gij E (A,$ - Aid-1 Wi-,)-* (Bij - Aii-,Gi-,,), 
i = 2,..., M - 1; j = I,..., L’, (All) 

where Cayley matrix multiplication is understood. These quantities make possible 
the recursive computation of the elements of the L(M - 1) x L’ matrix, A-IB. 

(AelB)~-l.j = GM-1.j ; (A-lB)ij = Gij - Wi(A-lB),+,,j 3 
i = M - 2, M - 3 ,..,, 1; j = l,..., L’. 6412) 

It is important to realize, however, that the quantities (A-‘B)fj in (A12) are not 
the matrix elements themselves but are rather column vectors of length L whose 
components are the desired matrix elements. A-lB has the same dimensions as B, 
and can be partitioned into submatrices, each of L rows, (A-lB), (i = I,..., M - I), 
in the same manner that B was partitioned. The subscript i in (A-lB),, indicates 
the submatrix and the j indicates the column vector in that submatrix. 

The L’ x L’ matrix CA-IB is now obtained. 

M-l 

(CA-lB)j, = C C’ji(A-lB)ik , 
i-1 

(A13) 

where, again, Cayley multiplication between the row vector Cji and column vector 
(A-lB)ik in each term in the summation is understood. 

In a similar manner, by partitioning the vector FI in (A8) into subvectors of 
length L, the L’dimensional column vector CA-lFl can be obtained. Then by 
inverting the L’ x L’ matrix CA-lB and premultiplying (A8) by (CA-lB)-l, we 
obtain A,. Finally, using the same techniques once again, we obtain A, 
[= A-1(Pl - BA2)], and the problem is solved. 

Note that the matrix A is not actually inverted at any stage of the solution. 
Also the number of calculations and storage locations for this algorithm are both 
proportional to L[(3L + 2L’)(M - 1) - 2L] (i.e., M to the first power). Thus, 
it is clear how the partitions defined in Fig. 1 greatly reduce the time and storage 
requirements, for without them J would have to be treated as a general square 
matrix of dimension L(M - 1) + L’. The time required for its inversion would 
then be proportional to [L(M - 1) + L’13, and [L(M - 1) + L’12 storage loca- 
tions would be required. 

58Ii22/4-4 
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